
Optically Active Solvents for Nuclear Magnetic 
Resonance. X. Enantiomeric Nonequivalence of 
Sulfinamides, Sulfinates, Sulfites, Thiosulfinates, 
Phosphine Oxides, and Amine Oxides 

•Sir: 

Because of the ready accessibility of resolved 2,2,2-
trifluorophenylethanol (I)1 and demonstrations of its 
use in optical purity determinations and absolute con­
figuration correlations of partially resolved amines,2 

Table II. Enantiomer Chemical Shift Differences for Type 4 Phos­
phine Oxides and Amine Oxides in Chiral Alcohols" 

• AS, Hz6 . 
X R CH3 R 

P CH2C6H5 1.4 
P CH2CH2CH3 1.9 
P C(CH3)3 3.2 
N (CH2UCH3)(J 3 .5 ' 3.4,5.5« 

0 Samples were composed of a 2 : 1 : ~ 3 mole ratios of carbinol 
l-solute-CCl4, respectively, unless otherwise specified. b Measured 
at 100 MHz and 29°. <= In ( - ) - 2 of 79% optical purity. 

sulfoxides,3 and a-amino esters,4 we wish to report pre­
liminary findings on the use of chiral fluoro alcohols in 
promoting nmr enantiomeric spectral nonequivalence 
in several other types of solutes. 

Based upon differences of their enantiomeric nmr 
spectra in ( —)-l, direct optical purity determinations 
are now possible for type 3 sulfinamides, sulfinates, sul­
fites, thiosulfinates, and type 4 phosphine oxides. 
Moreover, the use of optically active 2,2,2-trifluoro-
a-naphthylethanol (2) as an nmr solvent causes en-
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antiomeric spectral dissimilarities for type 4 amine 
oxides. Tables I and II give the enantiomeric (or en-
antiotopic) chemical shift differences (Ad) observed for 
several of the compounds studied and serves to illustrate 
the apparent generality of this phenomenon. 
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We feel that, when applicable, the use of optically 

active nmr solvents is the method of choice in deter-
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3, X = N, O, S 4, X = P, N 
mining optical purities of these oxides since it is ab­
solute and convenient and requires no further chemical 

transformation. The generality of this technique and 
its application in the determination of absolute con­
figurations will be the subject of a later report. 
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Synthesis of Pentaphenylborole, a Potentially 
Antiaromatic System 

Sir: 
Studies in carbocyclic antiaromatic systems, such as 

the substituted cyclopropenyl anion1 and the cyclo-
pentadienyl cation,2 have provided support for the con­
verse proposition of the Huckel rule, namely, that 
monocyclic conjugated sets of sp2-hybridized atoms 
having 4n T electrons will be especially unstable.3 That 
the pentaphenylcyclopentadienyl cation has a ther­
mally populated, low-lying triplet state has been demon­
strated by esr spectroscopic detection of half-field 
transitions. Thus, the gain in stabilization by ensconc­
ing the four tr electrons by pairs in bonding orbitals is 
not large. 

As heterocyclic rings of boron interest us as potential 
aromatic4 and antiaromatic analogs of carbocycles, we 
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Table I. Enantiomeric Chemical Shift Differences for Type 3 Sulfinamides, Sulfinates, Sulfites, and Thiosulfinates, ( - ) - l 0 

• AS, Hz" . 
R1 X R2 Ri" R2 

(CH3)aCHT(CH3),3 N (CH3)2 4 . 6 , 1 . 3 , 3 . 3 2.4 
(CH3)aCH7(CH3)(3 O CH3 0 . 0 , 0 . 0 , 0 . 7 0.5 
CH3O O CH8 0.55 
(CH3)aCH(sH70 O CH2CH3 0 . 5 , 0 . 7 , 0 . 0 
(CH3)3C S C(CH3J3 1.7 2.2 

0 Samples were composed of 2:1 : ~ 3 mole ratios of carbinol-solute-CFCl3, respectively. b Measured at 100 MHz and 29°. c Values are 
for the a, 8, ... protons, respectively. 
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